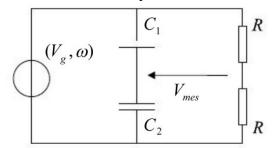

PHYSIQUE DES CAPTEURS

TD1

Exercice 1:

Un capteur de déplacement rectiligne est constitué d'un potentiomètre linéaire schématisé sur la figure 1ci-dessous. On désigne par Δx la valeur du déplacement du curseur par rapport à la position milieu que l'on prend pour origine de l'axe x.

- 1. La course utile du potentiomètre est 2l=10 cm et sa résistance totale est $2R_0$. En déduire l'expression des résistances $R_b(\Delta x)$ et $R_h(\Delta x)$ du potentiomètre (voir figure ci-dessus) pour un déplacement Δx du curseur par rapport à la position milieu.
- 2. Le potentiomètre est monté suivant le schéma de la figure ci-dessus. La tension de mesure V_{mes} , image de la position du curseur, est mesurée par une électronique d'impédance d'entrée R_{app} . Exprimer V_{mes} en fonction de $R_b(\Delta x)$, $R_h(\Delta x)$, R_g , R_{app} et V_g .
- 3. Que devient cette expression pour $R_{app} >> R_0$?
- 4. En déduire la sensibilité S_{mes} de la mesure
- 5. Quelle valeur doit-on donner à R_g pour que cette sensibilité soit maximale ? Que deviennent dans ce cas V_{mes} et S_{mes} ? Calculer la sensibilité réduite S_r .
- 6. Afin d'assurer un fonctionnement correct du capteur, le constructeur a fixé une limite $v_{max} = 0.2$ m.s⁻¹ pour la vitesse de déplacement v du curseur. En admettant que le curseur a un mouvement sinusoïdal d'amplitude a = 1 cm autour d'une position x_0 donnée, calculer la fréquence maximale f_{max} des déplacements que l'on peut traduire avec ce système.
- 7. Nous désirons mettre en œuvre un montage électronique qui permette la mesure de la position du curseur au moyen d'un μ C 0V 5V. Nous désirons utiliser toute l'amplitude du μ C afin de mesurer toute l'amplitude de déplacement du curseur. L'environnement est bruité. Proposez une solution avec des valeurs définies ou des références des composants.


Exercice 2:

On considère la structure de la figure ci-dessous, constituée de deux condensateurs plans identiques C1 et C2, de surface carrée ou rectangulaire d'aire A, entre les armatures desquels se déplace selon l'axe x un noyau diélectrique de permittivité relative ϵ_r .

- 1. Le noyau étant à sa position initiale, centré en x=0, déterminer l'expression des capacités C 1 (x=0) = C 2 (x=0) que l'on notera C_0 (on négligera pour cela les effets de bords et le couplage possible entre les deux condensateurs). On donne $\varepsilon_0=8,85.10-12$ F.m $^{-1}$, $\varepsilon_r=3$, $\varepsilon=1$ mm et $\varepsilon=1$ 0 cm $^{-1}$ 2.
- 2. Le noyau est déplacé de x de sa position d'origine, déterminer les expressions de C 1(x) et C 2(x).
 - Les écrire sous la forme C1 (x) = C0 + Δ C 1(x) et C2 (x) = C0 + Δ C2 (x) en précisant les expressions de Δ C1(x) et de Δ C2 (x) en fonction de C₀ , x, l et ϵ_r .
- 3. Les deux condensateurs sont montés dans un circuit en pont selon le schéma de la figure cidessus. Exprimer la tension différentielle de mesure Vmes en fonction de x, l, ϵ_r et V_g .

Capteur capacitif push-pull à glissement du diélectrique

- 1. En déduire la sensibilité S de la mesure. On donne : l=2 cm et $V_g=10$ V.
- 2. Quelles sont les valeurs de l'étendue de mesure et de l'excursion de V_{mes} ?